VicRus
Administrator
Тепловая смерть Вселенной
27.03.2018
Второй закон (начало) термодинамики говорит о том, что внутренняя энергия тепла (теплота) не может самостоятельно переходить от менее нагретого объекта к более нагретому объекту.Появление теории в 19 веке
Рудольф Клаузис
В результате Второго закона термодинамики любая физическая система, не обменивающаяся энергией с другими системами, стремится к самому вероятному состоянию равновесия — к состоянию с наибольшей энтропией (величина характеризующая степень неупорядоченности и теплового состояния физической системы). Этот закон впервые был описан Сади Карно в 1824 году. Как следствие этого, уже в 1852 году Уильям Кельвин предложил гипотезу о грядущей в будущем “тепловой смерти Земли“ в ходе процесса остывания нашей планеты до безжизненного состояния. В 1865 году Рудольф Клаузиус распространил эту гипотезу уже на всю Вселенную.
https://zen.yandex.ru/9se2802ar/5a2...UNn_/8iTpY/uDQa9/7fJp0bq_L1B/ZgWf/PzMDsWSM4qQ
В 1872 году австрийский физик Людвиг Больцман попытался количественно оценить энтропию с помощью формулы S = k * ln W (где, S — энтропия, k — константа Больцмана, W — количество микросостояний, реализующих макросостояние. Микросостояние — это состояние отдельной составляющей системы, а макросостояние — состояние системы в целом.
Наглядно об энтропии
В настоящее время энтропия видимой части нашей Вселенной оценивается примерно в 1088 или 10 октовигинтиллионов. Это значение примерно соответствует числу фотонов в нашей Вселенной, для сравнения число фотонов во Вселенной примерно в миллиард раз превышает число барионов (обычных элементарных частей состоящих из нескольких кварков – протонов, нейтронов, и т.д.).
Развитие теории в 20 веке
Открытие расширения Вселенной в 20 веке укрепило гипотезу будущей “тепловой смерти Вселенной“. Астрономические наблюдения наиболее удаленных частей наблюдаемой Вселенной показали, что наша Вселенная на масштабе в несколько сотен мегапарсек имеет неупорядоченный ячеистый вид, в котором сверхскопления галактик чередуются с огромными пустотами (войдами).
Крупномасштабная структура Вселенной
Ещё большим свидетельством справедливости гипотезы стало открытие реликтового излучения – теплового излучения Вселенной, возникшего во время рекомбинации (соединения протонов и электронов в атомы) первичного водорода, которое случилось через 379 тысяч лет. Процесс рекомбинации происходит при температурах в 3 тысячи Кельвинов, в то же время текущая температура реликтового излучения, определенная по его максимуму составляет только 2.7 Кельвинов. Изучение реликтового излучения показало, что оно является изотропным (однородным) для любого направления на небе на уровне в 99.999%.
Наглядная модель Вселенной
Астрономические наблюдения позволяют построить т.н. диаграмму Мадо («Madau-diagram»), которая показывает зависимость темпа звездообразования в зависимости от возраста Вселенной.
Эта диаграмма показывает, что пик звездообразования пришелся на 1-2 миллиард лет жизни нашей Вселенной
Изучение статистики квазаров (ядер активных галактик) позволяет независимо оценить темп звездообразования. Обзор 2DF, проведенный в 1997-2002 году на австралийском телескопе ААТ изучил около 10 тысяч квазаров на площади неба в 1.5 тысяч квадратных градусов в областях обоих галактических полюсов.
Другим доказательством верности теории будущей “тепловой смерти Вселенной“ стали исследования ядерной физики, которые показали, что энергия связи нуклонов (протонов и нейтронов) в ядре растет по мере увеличения их числа в ядре большинства химических элементов.
Диаграмма показывает, что пик звездообразования пришелся на 1-2 миллиард лет жизни нашей Вселенной
Следствием этой зависимости стало то, что термоядерные реакции слияния с участием более легких химических элементов (к примеру, водорода и гелия) приводят к выделению значительно большего количества энергии в недрах звезд, чем термоядерные реакции с участием более тяжелых химических элементов. Кроме того теоретические исследования в конце 20 века предположили, что и черные дыры не являются вечными, а постепенно испаряются под действием “излучения Хокинга“ (гипотетическое излучение черных дыр, которое преимущественно состоит из фотонов).
Аргументы против гипотезы “тепловой смерти“ Вселенной
Иллюстрация теории Большого разрыва Вселенной
Сомнения в справедливости гипотезы неизбежной “тепловой смерти Вселенной” в будущем можно разделить на несколько моментов (см. иллюстрацию теории Большого разрыва Вселенной).
Существует неопределенность в прогнозировании будущих изменений объема нашей Вселенной. Существует как теория Большого разрыва Вселенной (ускоренного расширения Вселенной до бесконечности), так и теория Большого сжатия Вселенной (в будущем Вселенная начнет сжиматься). Неопределенность между этими вариантами вызвана недавними открытиями загадочной темной материи и энергии.
Иллюстрация теории бесконечного цикла сжатия и расширения Вселенной
Существует неопределенностью в вопросе количества существующих Вселенных, и возможности связи между ними. С одной стороны фотометрический парадокс (парадокс Шезо — Ольберса) темного неба говорит о конечности размера и возраста нашей Вселенной, а так же об отсутствии её связи с другими Вселенными.
Слабое современное понимание влияния темной материи и энергии на эволюцию Вселенной
С другой стороны из принципа заурядности (принципа Коперника) следует, что наша Вселенная не уникальна, и должно существовать бесконечное множество других Вселенных с другим набором физических констант. Кроме того современная физика допускает существование пространственно-временных туннелей (кротовых нор) между разными Вселенными.
...
27.03.2018
Второй закон (начало) термодинамики говорит о том, что внутренняя энергия тепла (теплота) не может самостоятельно переходить от менее нагретого объекта к более нагретому объекту.Появление теории в 19 веке
Рудольф Клаузис
В результате Второго закона термодинамики любая физическая система, не обменивающаяся энергией с другими системами, стремится к самому вероятному состоянию равновесия — к состоянию с наибольшей энтропией (величина характеризующая степень неупорядоченности и теплового состояния физической системы). Этот закон впервые был описан Сади Карно в 1824 году. Как следствие этого, уже в 1852 году Уильям Кельвин предложил гипотезу о грядущей в будущем “тепловой смерти Земли“ в ходе процесса остывания нашей планеты до безжизненного состояния. В 1865 году Рудольф Клаузиус распространил эту гипотезу уже на всю Вселенную.
https://zen.yandex.ru/9se2802ar/5a2...UNn_/8iTpY/uDQa9/7fJp0bq_L1B/ZgWf/PzMDsWSM4qQ
В 1872 году австрийский физик Людвиг Больцман попытался количественно оценить энтропию с помощью формулы S = k * ln W (где, S — энтропия, k — константа Больцмана, W — количество микросостояний, реализующих макросостояние. Микросостояние — это состояние отдельной составляющей системы, а макросостояние — состояние системы в целом.
Наглядно об энтропии
В настоящее время энтропия видимой части нашей Вселенной оценивается примерно в 1088 или 10 октовигинтиллионов. Это значение примерно соответствует числу фотонов в нашей Вселенной, для сравнения число фотонов во Вселенной примерно в миллиард раз превышает число барионов (обычных элементарных частей состоящих из нескольких кварков – протонов, нейтронов, и т.д.).
Развитие теории в 20 веке
Открытие расширения Вселенной в 20 веке укрепило гипотезу будущей “тепловой смерти Вселенной“. Астрономические наблюдения наиболее удаленных частей наблюдаемой Вселенной показали, что наша Вселенная на масштабе в несколько сотен мегапарсек имеет неупорядоченный ячеистый вид, в котором сверхскопления галактик чередуются с огромными пустотами (войдами).
Крупномасштабная структура Вселенной
Ещё большим свидетельством справедливости гипотезы стало открытие реликтового излучения – теплового излучения Вселенной, возникшего во время рекомбинации (соединения протонов и электронов в атомы) первичного водорода, которое случилось через 379 тысяч лет. Процесс рекомбинации происходит при температурах в 3 тысячи Кельвинов, в то же время текущая температура реликтового излучения, определенная по его максимуму составляет только 2.7 Кельвинов. Изучение реликтового излучения показало, что оно является изотропным (однородным) для любого направления на небе на уровне в 99.999%.
Наглядная модель Вселенной
Астрономические наблюдения позволяют построить т.н. диаграмму Мадо («Madau-diagram»), которая показывает зависимость темпа звездообразования в зависимости от возраста Вселенной.
Эта диаграмма показывает, что пик звездообразования пришелся на 1-2 миллиард лет жизни нашей Вселенной
Изучение статистики квазаров (ядер активных галактик) позволяет независимо оценить темп звездообразования. Обзор 2DF, проведенный в 1997-2002 году на австралийском телескопе ААТ изучил около 10 тысяч квазаров на площади неба в 1.5 тысяч квадратных градусов в областях обоих галактических полюсов.
Другим доказательством верности теории будущей “тепловой смерти Вселенной“ стали исследования ядерной физики, которые показали, что энергия связи нуклонов (протонов и нейтронов) в ядре растет по мере увеличения их числа в ядре большинства химических элементов.
Диаграмма показывает, что пик звездообразования пришелся на 1-2 миллиард лет жизни нашей Вселенной
Следствием этой зависимости стало то, что термоядерные реакции слияния с участием более легких химических элементов (к примеру, водорода и гелия) приводят к выделению значительно большего количества энергии в недрах звезд, чем термоядерные реакции с участием более тяжелых химических элементов. Кроме того теоретические исследования в конце 20 века предположили, что и черные дыры не являются вечными, а постепенно испаряются под действием “излучения Хокинга“ (гипотетическое излучение черных дыр, которое преимущественно состоит из фотонов).
Аргументы против гипотезы “тепловой смерти“ Вселенной
Иллюстрация теории Большого разрыва Вселенной
Сомнения в справедливости гипотезы неизбежной “тепловой смерти Вселенной” в будущем можно разделить на несколько моментов (см. иллюстрацию теории Большого разрыва Вселенной).
Существует неопределенность в прогнозировании будущих изменений объема нашей Вселенной. Существует как теория Большого разрыва Вселенной (ускоренного расширения Вселенной до бесконечности), так и теория Большого сжатия Вселенной (в будущем Вселенная начнет сжиматься). Неопределенность между этими вариантами вызвана недавними открытиями загадочной темной материи и энергии.
Иллюстрация теории бесконечного цикла сжатия и расширения Вселенной
Существует неопределенностью в вопросе количества существующих Вселенных, и возможности связи между ними. С одной стороны фотометрический парадокс (парадокс Шезо — Ольберса) темного неба говорит о конечности размера и возраста нашей Вселенной, а так же об отсутствии её связи с другими Вселенными.
Слабое современное понимание влияния темной материи и энергии на эволюцию Вселенной
С другой стороны из принципа заурядности (принципа Коперника) следует, что наша Вселенная не уникальна, и должно существовать бесконечное множество других Вселенных с другим набором физических констант. Кроме того современная физика допускает существование пространственно-временных туннелей (кротовых нор) между разными Вселенными.
...