VicRus
Administrator
bull1251сегодня в 00:20
Возможна ли мгновенная передача информации? Эксперименты с квантово запутанными частицами
Доброго времени суток всем!
Мы продолжаем рассматривать возможности квантовой механики для передачи информации с использованием корреляции квантово-запутанных частиц. В отличие от классических способов связи, использование квантово запутанных частиц дает потенциальную возможность мгновенно передавать информацию на большие расстояния. Трудность заключается в том, чтобы найти способы кодирования и декодирования передаваемой информации. Данная статья посвящена поиску решений данной задачи и возможности создания экспериментальной установки. Если вас тоже интересует данная задача — добро пожаловать под кат!
Напомню, что в прошлой статье мы рассматривали одну из возможных схем для передачи информации между двумя удаленными объектами. В частности была рассмотрена оптическая схема со светоделителями для получения интерференции, а также схема детектирования и квантового стирания с использованием двух даун-конверторов. В комментариях было множество обсуждений по поводу работоспособности такой схемы, а также критика со стороны хабрапользователей, что применение даун-конверторов приводит к взаимодействию с исходной частицей, сдвигу фаз интерференционного паттерна и прочим неприятным последствиям. Я не исключаю такой возможности, поэтому после детального рассмотрения решил исключить использование даун-конверторов и построить схему с использованием круговых и линейных поляризаторов. Забегая вперед, могу сказать, что у данного решения есть свои трудности, вследствие которых невозможно получить картину интерференции. Для решения этих трудностей мы применим элегантный подход, вытекающий из следствия самой квантовой механики. Я глубоко благодарен всем, кто участвовал в обсуждении прошлой статьи. Ваши доводы и критика помогли мне глубже понять сопутствующие трудности, искать больше информации и находить новые решения.
Для начала рассмотрим реальную экспериментальную установку. Луч лазера попадает на нелинейно-оптическое устройство: кристалл бета-бората бария (BBO), благодаря которому один фотон преобразуется в два запутанных фотона более низкой частоты. Процесс, известен как спонтанное параметрическое рассеяние. Полученная пара фотонов следуют разными путями, один из которых поступает непосредственно на детектор 1, а второй проходит через двойную щель и попадает на детектор 2. Оба детектора подключены к схеме совпадений, гарантируя, что будут учитываться только запутанные пары фотонов. Шаговый двигатель перемещает второй детектор и сканирует целевой область, создавая карту интенсивности, которая формирует знакомую картину интерференции.
Для фотона, проходящего через двойную щель перед каждой щелью помещаются круговые поляризаторы, создающие поляризацию света по часовой стрелке при прохождении одной щели, и поляризацию против часовой стрелки при прохождении другой щели. Фотоны проходящие через поляризатор по часовой стрелке не могут пройти через поляризатор направленный против часовой стрелки. А фотоны проходящие через поляризатор против часовой стрелки, не могут пройти через поляризатор направленный по часовой стрелке. Круговые поляризаторы «маркируют» фотоны, разрушая интерференционную картину на втором детекторе (Законы Френеля-Араго).
Далее вводится линейный поляризатор на пути первого фотона, позволяющий получить диагональную поляризацию фотонов. Запутывание обеспечивает также дополнительную диагональную поляризацию в своем партнере, которая проходит через двойную щель. Это меняет эффект круговых поляризаторов — теперь каждый фотон способен пройти через круговые поляризаторы по часовой стрелке и против часовой стрелки. Таким образом, больше невозможно определить по какому пути прошли фотоны, и интерференционные полосы восстанавливаются.
Рассмотрим это подробнее на следующем примере. Представим себе Алису, использующую линейную или круговую поляризацию на первом детекторе мгновенно влияя на результаты измерения Боба на втором детекторе. Предположим, что кристалл BBO производит следующее состояние:
Если Алиса помещает круговой поляризатор перед детектором, который отфильтровывает фотоны с поляризацией по часовой стрелке, то каждый раз, когда Алиса измеряет фотон, соответствующий фотон Боба обязательно имеет поляризацию по часовой стрелки:
Поскольку Боб разместил возле каждой щели противоположные поляризационные фильтры, мы знаем, что эти фотоны могут пройти только (скажем) первую щель. Из этой щели они попадают на экран в соответствии с волновой функцией:
где a — расстояние между прорезями, d — расстояние от щелей до экрана, а x — расстояние до середины экрана. Интенсивность света на экране (количество фотонов) будет пропорциональна квадрату амплитуды этой волны, другими словами
Аналогично, когда Алиса измеряет фотон с поляризацией против часовой стрелки, соответствующий фотон Боба оказывается поляризованным против часовой стрелки, который может проходить только через вторую щель и попадать на экран с волновой функцией
Обратите внимание, что единственным отличием является знак a / 2, потому что фотон испускался из другой щели. На экране мы также увидим пятно, — но это другое пятно, который сдвинут на расстояние a. Здесь есть один важный момент: если Боб никогда не узнает, какую поляризацию применила Алиса, то Боб на самом деле видит на своем экране сумму двух интенсивностей:
поскольку оба они производятся в равных количествах кристаллом. Боб может различать только два пика в своих данных. Только после получения результатов измерения Алисы он сможет увидеть, что для набора фотонов, где Алиса измерила поляризацию по часовой стрелке, подмножество фотонов Боба распределилось согласно
а для набора фотонов, где Алиса измеряет поляризацию против часовой стрелки, подмножество фотонов Боба распределилось согласно
(два пика и их сумма, когда Алиса измеряет поляризацию фотонов с помощью кругового поляризатора)
Теперь рассмотрим ситуацию, когда Алиса будет использовать линейный поляризатор вместо кругового. Первое, что нужно сделать, это записать волновую функцию системы в терминах состояний линейной поляризации:
При использовании Алисой горизонтального поляризатора, волновая функция фотонов Боба окажется в состоянии суперпозиции поляризации по часовой стрелке и против часовой стрелки. Это означает, что фотон действительно сможет проходить через обе щели! При попадании на экран мы получим амплитуду волны
и его интенсивность
где
представляет собой разность фаз между двумя волновыми функциями в положении х на экране. Теперь на экране действительно интерференционная картина! Аналогично, если Алиса будет использовать вертикальный поляризатор, то амплитуда волн фотонов Боба равна
а интенсивность
И снова на экране возникает интерференционная картина, но она слегка изменилась от предыдущего из-за разности фаз фотонов, пересекающих горизонтальный и вертикальный поляризатор.
...
Возможна ли мгновенная передача информации? Эксперименты с квантово запутанными частицами

Доброго времени суток всем!
Мы продолжаем рассматривать возможности квантовой механики для передачи информации с использованием корреляции квантово-запутанных частиц. В отличие от классических способов связи, использование квантово запутанных частиц дает потенциальную возможность мгновенно передавать информацию на большие расстояния. Трудность заключается в том, чтобы найти способы кодирования и декодирования передаваемой информации. Данная статья посвящена поиску решений данной задачи и возможности создания экспериментальной установки. Если вас тоже интересует данная задача — добро пожаловать под кат!
Напомню, что в прошлой статье мы рассматривали одну из возможных схем для передачи информации между двумя удаленными объектами. В частности была рассмотрена оптическая схема со светоделителями для получения интерференции, а также схема детектирования и квантового стирания с использованием двух даун-конверторов. В комментариях было множество обсуждений по поводу работоспособности такой схемы, а также критика со стороны хабрапользователей, что применение даун-конверторов приводит к взаимодействию с исходной частицей, сдвигу фаз интерференционного паттерна и прочим неприятным последствиям. Я не исключаю такой возможности, поэтому после детального рассмотрения решил исключить использование даун-конверторов и построить схему с использованием круговых и линейных поляризаторов. Забегая вперед, могу сказать, что у данного решения есть свои трудности, вследствие которых невозможно получить картину интерференции. Для решения этих трудностей мы применим элегантный подход, вытекающий из следствия самой квантовой механики. Я глубоко благодарен всем, кто участвовал в обсуждении прошлой статьи. Ваши доводы и критика помогли мне глубже понять сопутствующие трудности, искать больше информации и находить новые решения.
Для начала рассмотрим реальную экспериментальную установку. Луч лазера попадает на нелинейно-оптическое устройство: кристалл бета-бората бария (BBO), благодаря которому один фотон преобразуется в два запутанных фотона более низкой частоты. Процесс, известен как спонтанное параметрическое рассеяние. Полученная пара фотонов следуют разными путями, один из которых поступает непосредственно на детектор 1, а второй проходит через двойную щель и попадает на детектор 2. Оба детектора подключены к схеме совпадений, гарантируя, что будут учитываться только запутанные пары фотонов. Шаговый двигатель перемещает второй детектор и сканирует целевой область, создавая карту интенсивности, которая формирует знакомую картину интерференции.

Для фотона, проходящего через двойную щель перед каждой щелью помещаются круговые поляризаторы, создающие поляризацию света по часовой стрелке при прохождении одной щели, и поляризацию против часовой стрелки при прохождении другой щели. Фотоны проходящие через поляризатор по часовой стрелке не могут пройти через поляризатор направленный против часовой стрелки. А фотоны проходящие через поляризатор против часовой стрелки, не могут пройти через поляризатор направленный по часовой стрелке. Круговые поляризаторы «маркируют» фотоны, разрушая интерференционную картину на втором детекторе (Законы Френеля-Араго).
Далее вводится линейный поляризатор на пути первого фотона, позволяющий получить диагональную поляризацию фотонов. Запутывание обеспечивает также дополнительную диагональную поляризацию в своем партнере, которая проходит через двойную щель. Это меняет эффект круговых поляризаторов — теперь каждый фотон способен пройти через круговые поляризаторы по часовой стрелке и против часовой стрелки. Таким образом, больше невозможно определить по какому пути прошли фотоны, и интерференционные полосы восстанавливаются.
Рассмотрим это подробнее на следующем примере. Представим себе Алису, использующую линейную или круговую поляризацию на первом детекторе мгновенно влияя на результаты измерения Боба на втором детекторе. Предположим, что кристалл BBO производит следующее состояние:
Если Алиса помещает круговой поляризатор перед детектором, который отфильтровывает фотоны с поляризацией по часовой стрелке, то каждый раз, когда Алиса измеряет фотон, соответствующий фотон Боба обязательно имеет поляризацию по часовой стрелки:
Поскольку Боб разместил возле каждой щели противоположные поляризационные фильтры, мы знаем, что эти фотоны могут пройти только (скажем) первую щель. Из этой щели они попадают на экран в соответствии с волновой функцией:
где a — расстояние между прорезями, d — расстояние от щелей до экрана, а x — расстояние до середины экрана. Интенсивность света на экране (количество фотонов) будет пропорциональна квадрату амплитуды этой волны, другими словами
Аналогично, когда Алиса измеряет фотон с поляризацией против часовой стрелки, соответствующий фотон Боба оказывается поляризованным против часовой стрелки, который может проходить только через вторую щель и попадать на экран с волновой функцией
Обратите внимание, что единственным отличием является знак a / 2, потому что фотон испускался из другой щели. На экране мы также увидим пятно, — но это другое пятно, который сдвинут на расстояние a. Здесь есть один важный момент: если Боб никогда не узнает, какую поляризацию применила Алиса, то Боб на самом деле видит на своем экране сумму двух интенсивностей:
поскольку оба они производятся в равных количествах кристаллом. Боб может различать только два пика в своих данных. Только после получения результатов измерения Алисы он сможет увидеть, что для набора фотонов, где Алиса измерила поляризацию по часовой стрелке, подмножество фотонов Боба распределилось согласно

(два пика и их сумма, когда Алиса измеряет поляризацию фотонов с помощью кругового поляризатора)
Теперь рассмотрим ситуацию, когда Алиса будет использовать линейный поляризатор вместо кругового. Первое, что нужно сделать, это записать волновую функцию системы в терминах состояний линейной поляризации:
При использовании Алисой горизонтального поляризатора, волновая функция фотонов Боба окажется в состоянии суперпозиции поляризации по часовой стрелке и против часовой стрелки. Это означает, что фотон действительно сможет проходить через обе щели! При попадании на экран мы получим амплитуду волны
и его интенсивность
где
а интенсивность
И снова на экране возникает интерференционная картина, но она слегка изменилась от предыдущего из-за разности фаз фотонов, пересекающих горизонтальный и вертикальный поляризатор.
...