Тепловая смерть Вселенной?

VicRus

Administrator
#1
Тепловая смерть Вселенной
27.03.2018




Второй закон (начало) термодинамики говорит о том, что внутренняя энергия тепла (теплота) не может самостоятельно переходить от менее нагретого объекта к более нагретому объекту.Появление теории в 19 веке


Рудольф Клаузис
В результате Второго закона термодинамики любая физическая система, не обменивающаяся энергией с другими системами, стремится к самому вероятному состоянию равновесия — к состоянию с наибольшей энтропией (величина характеризующая степень неупорядоченности и теплового состояния физической системы). Этот закон впервые был описан Сади Карно в 1824 году. Как следствие этого, уже в 1852 году Уильям Кельвин предложил гипотезу о грядущей в будущем “тепловой смерти Земли“ в ходе процесса остывания нашей планеты до безжизненного состояния. В 1865 году Рудольф Клаузиус распространил эту гипотезу уже на всю Вселенную.
https://zen.yandex.ru/9se2802ar/5a22a4XJ/QjHouxbx/CTLVAW/pODjbsP/nuigRXp5/_yNqf/zXUQJO2Gvr/J5osL/8RieE1kdNZQ/CZ/YDdfYnqz/KkywPeb/csWuQuA/TZAALI/0yUOxXArD/oHXtzq/D-fk5V2KX/YtGD8vVW/CReNjvv/VdMPog/DU11dZdR/2Bj0CAtI/GIb-2/N9sSv4j/-Bt7Zt/yiBUsqdxx/V7QzLTf3/5fI79Iu/ecG/gNvmeW/moLqD287/g8SfrnX/egKAPE5/DUczIZf/40ial4Ler/stbLkt5/YS2EJOac/9l6XrP/vMX67L/Ew4qb61/bPix_yV5VY/Q6/w--Azgd/rcrmHg9VX/3vLwEz/SGpjRNemH/TQSkWN/nrGdzn/kJeXbli/KThgSpb/1q-3HRUl3Y/6NvXD/8Fzwuo9s/bQ-CRs/Gehf1/aKAyzjo/Gsb7bypEc/10qYwenp/nzVQzIz/96zSpj/6z6o2/4No28Rg0/GIPu-4K/SsIPJxb1x/bZoi5j4LH/9Ng/TnBnob-aBwn/5dmp12/-p5r5/BDpKANU9/qHZN4al/kZINJCY71/b-4yYD/uXATIV/mCb_eGX/W6cE/4HovrtSdP5_/woGD/7ZM4p6HqVRp/dYzpq9/Qy3u2/ORCeCplM6G/mOUV25/XNg/_HW165Ca/GHlz6SwQTQ/Z17Iu/C15iBQ_/X66-xlyDq/79wD/lXBVZfjiK/tSLg3m/yf6xM/InSi0Ih/t5RBbUYL6/lVuXxgr4m1/DzCD725/doksNB0/g1/fq9wCaLYKNF/-R78Vu2r/iPMH9Km/3L/v1tWrRz5z/nuj8p/jGL4IoTIKey/aFUa/N5MiHABhDbB/tOs/5eotmHaZv/CY9BnXs/i7cA-0cyE/O9f/a3U4i6h2/5WWoth4v/jhzgY6Aef/Z_K/Ffq96uSRaR/hnA/vRDadJXgb/Nzn3N3/3oC63c5mqbw/QLSYF/jPs3kM/xnZYDaTg6W/7J5Lw/4TUncf/sfJw6RaIA/vm85ihNa/DjiEYo/sYw2S0c/9yVw0/NioF11s4x/jj7358/P94t/7tB4ZseVw/GsEHWAyp5/-RglqW/hM1UA/wHGTz4KrX/m1_rMi/hjnKfzq8QB/4m/JfWxHKNF5Ohs/1O/ex7eeMG44eyM/MyGRZoj/DJrz/LFmAN/hEct_TgccKlo/TpYWol/s0N/vd-E8qNqPbo/45ngs/C7GhKHg/2F7TiH/afikaJin/keWr4A/-eQqC7Un/0GVNgCN4y/FIg/ycdGb327/3Lep6E-/XVOUb8_e/1_1QNDCm37/2HaZ/rbogU/NhIJtYE/4zz2IuHzUi/5nVq6/h_yk70i2oFe/mDI/cl_o1WpgsCQ/20/5-Z_0ai5MVVE/l2zUz9z/-WzI/muM26/kmOW2r4/SE4KSfHVBP/NN9JgI/qP-x4Yuoc5/Jy/9I8aJWYchBY/_qM1e/BIRUN/q-nvcdSvoz/tVT4Zs/z9zS8kY_/LrnK/ppdmjd6/_BBGXk3J7SzX/SaCY/NJTn0bWPm/Hvueo/znbml-SLw/eT-ThIl/DYX/HKLs_2_Vrbo/kTkeZbMj/K3vF/OMCC6yqeB/eorNq/hkSkZ/1xbUgw13Y/pHiMu92/9m7Rzkja/AuwJt/elS4Dj/Ps3W5AmBA2r4/OZ7zq/e5LkdVlX/7A39T0S/zUyv8i2j/GWJw/rgCE4/GVZnBFJ9J/qPwMrPvZ/uZegV/-pynP9ibUYs/1F4/LkJFKQLxE/Er-z0Z/8u9rD5YR/J1rzMzE/9108Mq/3UvIZz/lsanBg-Cj/2hpR/CTEdi0bOiDy/Y3H/6HPmNqTfY/iFyYI/wed5SNO/gTcTB6b34W/jVpKA0X0y/Hbdb/L0u5c/Piu-zrq/UcZreoAUG/iYRtb14/myGAxA/Dc94XJt5hXo/jLo40/4lcizUNn_/8iTpY/uDQa9/7fJp0bq_L1B/ZgWf/PzMDsWSM4qQ

В 1872 году австрийский физик Людвиг Больцман попытался количественно оценить энтропию с помощью формулы S = k * ln W (где, S — энтропия, k — константа Больцмана, W — количество микросостояний, реализующих макросостояние. Микросостояние — это состояние отдельной составляющей системы, а макросостояние — состояние системы в целом.


Наглядно об энтропии
В настоящее время энтропия видимой части нашей Вселенной оценивается примерно в 1088 или 10 октовигинтиллионов. Это значение примерно соответствует числу фотонов в нашей Вселенной, для сравнения число фотонов во Вселенной примерно в миллиард раз превышает число барионов (обычных элементарных частей состоящих из нескольких кварков – протонов, нейтронов, и т.д.).
Развитие теории в 20 веке
Открытие расширения Вселенной в 20 веке укрепило гипотезу будущей “тепловой смерти Вселенной“. Астрономические наблюдения наиболее удаленных частей наблюдаемой Вселенной показали, что наша Вселенная на масштабе в несколько сотен мегапарсек имеет неупорядоченный ячеистый вид, в котором сверхскопления галактик чередуются с огромными пустотами (войдами).


Крупномасштабная структура Вселенной
Ещё большим свидетельством справедливости гипотезы стало открытие реликтового излучения – теплового излучения Вселенной, возникшего во время рекомбинации (соединения протонов и электронов в атомы) первичного водорода, которое случилось через 379 тысяч лет. Процесс рекомбинации происходит при температурах в 3 тысячи Кельвинов, в то же время текущая температура реликтового излучения, определенная по его максимуму составляет только 2.7 Кельвинов. Изучение реликтового излучения показало, что оно является изотропным (однородным) для любого направления на небе на уровне в 99.999%.


Наглядная модель Вселенной
Астрономические наблюдения позволяют построить т.н. диаграмму Мадо («Madau-diagram»), которая показывает зависимость темпа звездообразования в зависимости от возраста Вселенной.


Эта диаграмма показывает, что пик звездообразования пришелся на 1-2 миллиард лет жизни нашей Вселенной
Изучение статистики квазаров (ядер активных галактик) позволяет независимо оценить темп звездообразования. Обзор 2DF, проведенный в 1997-2002 году на австралийском телескопе ААТ изучил около 10 тысяч квазаров на площади неба в 1.5 тысяч квадратных градусов в областях обоих галактических полюсов.
Другим доказательством верности теории будущей “тепловой смерти Вселенной“ стали исследования ядерной физики, которые показали, что энергия связи нуклонов (протонов и нейтронов) в ядре растет по мере увеличения их числа в ядре большинства химических элементов.


Диаграмма показывает, что пик звездообразования пришелся на 1-2 миллиард лет жизни нашей Вселенной
Следствием этой зависимости стало то, что термоядерные реакции слияния с участием более легких химических элементов (к примеру, водорода и гелия) приводят к выделению значительно большего количества энергии в недрах звезд, чем термоядерные реакции с участием более тяжелых химических элементов. Кроме того теоретические исследования в конце 20 века предположили, что и черные дыры не являются вечными, а постепенно испаряются под действием “излучения Хокинга“ (гипотетическое излучение черных дыр, которое преимущественно состоит из фотонов).
Аргументы против гипотезы “тепловой смерти“ Вселенной


Иллюстрация теории Большого разрыва Вселенной
Сомнения в справедливости гипотезы неизбежной “тепловой смерти Вселенной” в будущем можно разделить на несколько моментов (см. иллюстрацию теории Большого разрыва Вселенной).
Существует неопределенность в прогнозировании будущих изменений объема нашей Вселенной. Существует как теория Большого разрыва Вселенной (ускоренного расширения Вселенной до бесконечности), так и теория Большого сжатия Вселенной (в будущем Вселенная начнет сжиматься). Неопределенность между этими вариантами вызвана недавними открытиями загадочной темной материи и энергии.


Иллюстрация теории бесконечного цикла сжатия и расширения Вселенной
Существует неопределенностью в вопросе количества существующих Вселенных, и возможности связи между ними. С одной стороны фотометрический парадокс (парадокс Шезо — Ольберса) темного неба говорит о конечности размера и возраста нашей Вселенной, а так же об отсутствии её связи с другими Вселенными.


Слабое современное понимание влияния темной материи и энергии на эволюцию Вселенной
С другой стороны из принципа заурядности (принципа Коперника) следует, что наша Вселенная не уникальна, и должно существовать бесконечное множество других Вселенных с другим набором физических констант. Кроме того современная физика допускает существование пространственно-временных туннелей (кротовых нор) между разными Вселенными.

...
 

VicRus

Administrator
#2
...

При охлаждении обычного вещества (переходе его в твердое состояние) его энтропия не увеличивается, а наоборот уменьшается:


Энтропия на примере воды
Ключевыми моментами теории “тепловой смерти” Вселенной является возможность распада протона и существование “излучения Хокинга“, но эти гипотетические явления пока не доказаны экспериментально.


Информационный парадокс
Существует большая неопределенность в вопросе влияния жизни и разума на динамику энтропии Вселенной. В вопросе влияния неразумных жизненных форм на энтропию Вселенной мало сомнений, что жизнь уменьшает энтропию. В качестве доказательств этого можно привести факты более сложной природы живых организмов по сравнению с любыми неорганическими химическими веществами. Поверхность нашей планеты за счет биосферы выглядит куда более разнообразной по сравнению с “мертвой“ поверхностью Луны, Марса или Венеры. Кроме того простейшие живые организмы замечены в деятельности по обогащению земной атмосферы кислородом (биогенный кислород), а так же генерированию богатых месторождений полезных ископаемых (биогенез).


Сравнение поверхности Венеры, Земли, Луны, Марса и Титана (слева направо)
В то же время остаётся без ответа вопрос о том, увеличивает или уменьшает энтропию Вселенной разумная жизнь (то есть человек)? С одной стороны человеческий мозг является наиболее сложной формой из известных среди живых организмов, как и то, что научно-технический прогресс позволил людям достичь невиданных высот в познании и конструирование, в том числе в синтезировании химических элементов и элементарных частиц, которых не наблюдается в природе. Современная человеческая цивилизация способна предотвращать крупные природные катастрофы (лесные пожары, наводнения, массовые эпидемии и т.д.) и в шаге от возможности предотвращения катастроф планетарного масштаба (падения небольших астероидов и комет).


Ночная фотография поверхности Земли из космоса
С другой стороны человеческая цивилизация выделяется и “энтропийными“ тенденциями. Растет разрушительная мощь оружейных арсеналов вместе с увеличением числа опасных химических и ядерных производств, горная промышленность всего за десятилетия способна опустошить месторождения полезных ископаемых, которые накапливались на планете многие сотни миллионов лет. Развитие сельского хозяйства привело к обезлесению большей части поверхности нашей планеты, а так же способствует деградации почв и опутыванию. Браконьерство, выбросы парниковых газов (возможное окисление океана) и т.д. быстро сокращают биоразнобразие нашей планеты, в связи, с чем экологи причисляют нынешнее время к новому массовому вымиранию. Кроме того в последние десятилетия отмечено сильное снижение рождаемости и в наиболее развитых странах, не исключено что эта демографическая ситуация стала следствием запредельного усложнения быта человеческой цивилизации.


Тепловая смерть Земли
В связи со всеми этими тенденциями, ближайшее будущее человеческой цивилизации представляет собой огромное количество возможных вариантов: начиная от эпической картины космической колонизации всей галактики вместе со строительством сфер Дайсона, расцветом искусственного интеллекта и установлением контакта с внеземными цивилизациями вплоть до отката в вечное средневековье на планете с подорванными минеральными и биологическими ресурсами. Парадокс Ферми (Великое молчание Вселенной) добавляет ещё больше неопределенности в вопросе влияния жизни и разума на динамику энтропии Вселенной, так как существует огромный диапазон для его объяснения: от огромной редкости биосфер и разумных цивилизаций во Вселенной до гипотезы, что наша Земля представляет собой некий “заповедник“ или “матрицу“ в мире разумных сверхцивилизаций.
Современное представление о “тепловой смерти“ Вселенной
В настоящее время физики рассматривают следующую последовательность эволюции Вселенной в будущем при условии её дальнейшего расширения с текущей скоростью:
  • 1-100 триллионов (1012) лет – завершение процессов образования звезд во Вселенной и угасание даже самых поздних красных карликов. После этого момента во Вселенной останутся только звездные остатки: черные дыры, нейтронные звезды и белые карлики.
  • 1 квадратиллионов (1015) лет – все планеты покинут свои орбиты вокруг звезд в связи с гравитационными возмущениями от близких пролетов других звезд.
  • 10-100 квинтиллионов (1018) лет – все планеты, коричневые карлики и звездные остатки покинут свои галактики по причине постоянных гравитационных возмущений друг от друга.
  • 100 квинтиллионов (1018) лет – приблизительное время падения Земли на Солнце по причине излучения гравитационных волн, в случае если бы Земля пережила стадию красного гиганта и осталась бы на своей орбите.
  • 2 анвигинтиллиона (1066) лет – приблизительное время полного испарения черной дыры массой с Солнце.
  • 17 септдециллиардов (10105) лет – приблизительное время полного испарения черной дыры массой в 10 триллионов масс Солнца. Это время окончания эпохи черных дыр.
В дальнейшем будущее Вселенной распадается на два возможных варианта в зависимости от того является ли протон стабильной элементарной частицей или нет:
  • А) Протон является нестабильной элементарной частицей;
  • А1) 10 дециллионов (1033) лет – наименьшее возможное время полураспада протона согласно экспериментам ядерных физиков на Земле;
  • А2) 2 ундециллиона (1036) лет – наименьшее возможное время распада всех протонов во Вселенной;
  • А3) 100 додециллионов (1039) лет – наибольшее возможное время полураспада протона, которое следует из гипотезы, что Большой взрыв объясняется инфляционными космологическими теориями, и что распад протона вызван тем же процессом, который ответственен за преобладание барионов над антибарионами в ранней Вселенной;
  • А4) 30 тредециллионов (1041) лет – максимальное возможное время распада всех барионов во Вселенной. После этого времени должна начаться эпоха черных дыр, так как они останутся единственными существующими небесными объектами во Вселенной;
  • А5) 17 септдециллиардов (10105) лет – примерное время полного испарения даже наиболее массивных черных дыр. Это время окончания эпохи черных дыр, и наступления эпохи вечной тьмы, в которой все объекты Вселенной распались до субатомных частиц и замедлились до наименьшего энергетического уровня.


Иллюстрация сценария будущего Вселенной где протон является нестабильной элементарной частицей
Б) Протон стабильная элементарная частица;
Б1) 100 вигинтиллионов (1063) лет – время, за которое все тела в твердой форме даже при абсолютном нуле превратятся в “жидкообразное” состоянии, вызванное эффектом квантового туннелирования – миграцией в другие части кристаллической решетки;
Б2) 101500 лет – появление гипотетических железных звезд по причине процессов холодного нуклеосинтеза, идущего путём квантового туннелирования, в ходе которого легкие ядра преобразуются в наиболее стабильный изотоп – Fe56 (по другим сведениям самым стабильным изотопом является никель-62, который обладает наиболее высокой энергией связи.). Одновременно тяжелые ядра также превращаются в железо по причине радиоактивного распада;


Черные дыры
Б3) 10 в 1026 – 10 в 1076 лет – оценка диапазона времени в течение которого все вещество во Вселенной аккрецирует в черные дыры.
Эпоха черных дыр


Кадр из клипа группы Комплексные числа “Неизбежность”
И в заключение можно отметить предположение, что после 10 в 10120 лет все вещество во Вселенной достигнет минимального энергетического состояния. То есть это и будет гипотетическое наступление “тепловой смерти“ Вселенной. Кроме того у математиков существует понятие времени возврата Пуанкаре.
Это понятие означает вероятность того, что рано или поздно любая часть системы вернется в свое первоначальное состояние. Хорошей иллюстрацией этого понятия является вариант, когда в сосуде, разделенном на две части перегородкой, в одной из частей находится некий газ. Если убрать перегородку, то все равно рано или поздно наступит время, когда все молекулы газа окажутся в исходной половине сосуда. Для нашей Вселенной время возврата Пуанкаре оценивается фантастически большой величиной.
Теория “тепловой смерти“ Вселенной стала популярна и в массовой культуре. Хорошей иллюстрацией этой теории стал клип группы Комплексные числа: “Неизбежность”, а так же научно-фантастический рассказ Айзека Азимова “Последний вопрос”.
 


Сверху